Factores cognitivos y actitudinales involucrados en el desempeño en matemáticas en estudiantes de secundaria

  • Florencia Stelzer Instituto de Psicología Básica, Aplicada y Tecnología, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina http://orcid.org/0000-0002-2082-8839
  • Yésica Aydmune Instituto de Psicología Básica, Aplicada y Tecnología, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina http://orcid.org/0000-0002-0702-9653
  • Ana García-Coni Instituto de Psicología Básica, Aplicada y Tecnología, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina http://orcid.org/0000-0002-6304-7880
  • Santiago Vernucci Instituto de Psicología Básica, Aplicada y Tecnología, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina http://orcid.org/0000-0003-1595-3106
  • Isabel Introzzi Instituto de Psicología Básica, Aplicada y Tecnología, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina http://orcid.org/0000-0002-0286-9637
Palabras clave: desempeño académico, funciones ejecutivas, actitudes hacia las matemáticas, adolescentes

Resumen

Antecedentes: distintos autores indican que las actitudes hacia las matemáticas, las funciones ejecutivas y el conocimiento matemático previo representan variables centrales en el aprendizaje de esta asignatura; no obstante, no se dispone de evidencia respecto a su contribución conjunta y relativa para la predicción del desempeño en matemáticas en estudiantes de nivel secundario. Objetivo general: analizar la contribución de la competencia percibida, el gusto por las matemáticas, las funciones ejecutivas y el conocimiento previo en la predicción del desempeño en matemáticas en estudiantes de primer y segundo año del nivel secundario. Método: participaron 178 estudiantes de los primeros años de secundaria (edad M = 13.4 años, DE = .32; 45.5% varones). Resultados: se halló que el conjunto de variables explicó el 49% de la varianza en el desempeño en matemáticas, siendo la competencia percibida, el gusto por las matemáticas y la memoria de trabajo predictores significativos. No se hallaron diferencias en la fuerza de la relación de la memoria de trabajo con el desempeño en matemáticas entre los años escolares analizados. Conclusiones: los aspectos actitudinales evaluados y la memoria de trabajo representan variables de importancia para predecir el desempeño en matemáticas en el nivel secundario.

Contribución de autoría
Todos los autores aportaron en todos los aspectos del trabajo.

Descargas

La descarga de datos todavía no está disponible.

Citas

Adelson, J. L., & McCoach, D. B. (2011). Development and Psychometric Properties of The Math and Me Survey.
Measuring Third Through Sixth Graders’ Attitudes Toward Mathematics. Measurement and Evaluation in
Counseling and Development, 44(4), 225-247. https://doi.org/10.1177/0748175611418522

Aiken, L. R. (1974). Two Scales of Attitude Toward Mathematics. Journal for Research in Mathematics
Education, 5(2), 67-71. https://doi.org/10.2307/748616

Alloway, T. P., & Copello, E. (2013). Working Memory: The What, the Why, and the How. The Educational and
Developmental Psychologist, 30(2), 105-118. https://doi.org/10.1017/edp.2013.13

Arán, V., & Richaud, M. C. (2017). A Structural Equation Modeling of Executive Functions, IQ and Mathematical
Skills in Primary Students: Differential Effects on Number Production, Mental Calculus and Arithmetical
Problems. Child Neuropsychology, 23(7), 864-888. https://doi.org/10.1080/09297049.2016.1199665.

Arens, A. K., Marsh, H. W., Pekrun, R., Lichtenfeld, S., Murayama, K., & Vom Hofe, R. (2017). Math SelfConcept, Grades, and Achievement Test Scores: LongTerm Reciprocal Effects Across Five Waves and Three Achievement Tracks. Journal of Educational
Psychology, 109(5), 621-634. https://doi.org/10.1037/edu0000163

Auzmendi, E. (1992). Las actitudes hacia la matemáticaestadística en las enseñanzas medias y universitaria. Características y medición. Mensajero.

Baddeley, A. D. (2012). Working Memory: Theories, Models, and Controversies. Annual Review of Psychology, 63, 1-29. https://doi.org/10.1146/annurevpsych-120710-100422

Bull, R., & Lee, K. (2014). Executive Functioning and Mathematics Achievement. Child Development
Perspectives, 8(1), 36-41. https://doi.org/10.1111/cdep.12059

Bull, R., & Scerif, G. (2001). Executive Functioning as a Predictor of Children’s Mathematics Ability: Inhibition,
Switching, and Working Memory. Developmental Neuropsychology, 19(3), 273-293. https://doi.org/10.1207/S15326942DN1903_3

Buttelmann, F., & Karbach, J. (2017). Development and Plasticity of Cognitive Flexibility in Early and Middle
Childhood. Frontiers in Psychology, 8, 1040. https://doi.org/10.3389/fpsyg.2017.01040

Cassidy, S. (2011). Self-Regulated Learning in Higher Education: Identifying Key Component Processes.
Studies in Higher Education, 36(8), 989-1000. https://doi.org/10.1080/03075079.2010.503269

Chen, L., Bae, S. R., Battista, C., Qin, S., Chen, T., Evans, T. M., & Menon, V. (2018). Positive Attitude Toward
Math Supports Early Academic Success: Behavioral Evidence and Neurocognitive Mechanisms.
Psychological Science, 29(3), 390-402. https://doi.org/10.1177/095679761773552

Chung, M. K. (2000). The Development of Self-Regulated Learning. Asia Pacific Education Review, 1(1), 55-66. https://doi.org/10.1007/BF03026146

Connell, J. P., & Wellborn, J. G. (1991). Competence, Autonomy, and Relatedness: A Motivational Analysis
of Self-System Processes. En M. R. Gunnar & L. A. Sroufe (Eds.), Self processes and development (pp. 43-77). Lawrence Erlbaum Associates, Inc.

Cragg, L., & Gilmore, C. (2014). Skills Underlying Mathematics: The Role of Executive Function in the Development of Mathematics Proficiency. Trends in Neuroscience and Education, 3(2), 63-68. https://doi.org/10.1016/j.tine.2013.12.001

Dehn, M. J. (2017). How Working Memory Enables Fluid Reasoning. Applied Neuropsychology: Child, 6(3), 245-247. https://doi.org/10.1080/21622965.2017.1317490

Dempster, F. N. (1992). The Rise and Fall of the Inhibitory Mechanism: Toward a Unified Theory of Cognitive
Development and Aging. Developmental Review, 12(1), 45-75. https://doi.org/10.1016/0273-2297(92)90003-K

Diamond, A. (2013). Executive Functions. Annual Review of Psychology, 64(1), 135-168. https://doi.org/10.1146/ annurev-psych-113011-143750

Di Martino, P., & Zan, R. (2015). The Construct of Attitude in Mathematics Education. En B. Pepin, & B. RoeskenWinter (Eds.), From Beliefs to Dynamic Affect Systems in Mathematics Education: Exploring a Mosaic of Relationships and Interactions (pp. 51-72). Springer International Publishing/Springer Nature. https://doi.org/10.1007/978-3-319-06808-4_3

Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., Paganie, L., Feinsteinf,
L., Engela, M., BrooksGunng, J., Sextonh, H., Duckworthf, K., & Jape, C. (2007). School Readiness
and Later Achievement. Developmental Psychology, 43, 1428-1446. https://doi.org/10.1037/0012-1649.44.1.217

DuPaul, G. J., Rapport, M. D., & Perriello, L. M. (1991). Teacher Ratings of Academic Skills: The Development
of the Academic Performance Rating Scale. School Psychology Review, 20(2), 284-300. https://doi.org/
10.1080/02796015.1991.12085552

Eagly, A. H., & Chaiken, S. (2005). Attitude Research in the 21st century: The Current State of Knowledge. En
D. Albarracín, B. T. Johnson, & M. P. Zanna (Eds.), The Handbook of Attitudes (pp. 743-767). Lawrence
Erlbaum Associates Publishers.

Eccles, J. S., & Wang, M. T. (2016). What Motivates Females and Males to Pursue Careers in Mathematics
and Science? International Journal of Behavioral Development, 40, 100-106. https://doi.org/10.1177/0165025415616201

Engle, R. W. (2018). Working Memory and Executive Attention: A Revisit. Perspectives on Psychological
Science, 13(2), 190-193. https://doi.org/10.1177/1745691617720478

Field, A. (2017). Discovering Statistics Using IBM SPSS Statistics. (5.ta ed.). Sage.

Friso-Van den Bos, I., Van der Ven, S. H. G., Kroesbergen, E. H., & Van Luit, J. E. H. (2013). Working Memory and
Mathematics in Primary School Children: A MetaAnalysis. Educational Research Review, 10, 29-44.
https://doi.org/10.1016/j.edurev.2013.05.003

Fuchs, L. S., Fuchs, D., Sterba, S. K., Barnes, M. A., Seethaler, P. M., & Changas, P. (2022). Building WordProblem Solving and Working Memory Capacity: A Randomized Controlled Trial Comparing Three Intervention Approaches. Journal of Educational Psychology, 114(7), 1633-1653. https://doi.org/10.1037/edu0000752

Geary, D. C., Boykin, A. W., Embretson, S., Reyna, V., Siegler, R., Berch, D. B., & Graban, J. (2008). Report of the Task
Group on Learning Processes. En National Mathematics Advisory Panel (Ed.), Foundations for Success. The
Final Report of the National Mathematics Advisory Panel. (pp. 4.i-4.221). U.S. Department of Education.
https://files.eric.ed.gov/fulltext/ED502980.pdf

Geary, D. C., Hoard, M. K., Nugent, L., & Scofield, J. E. (2021). In-class Attention, Spatial Ability, and
Mathematics Anxiety Predict Across-Grade Gains in Adolescents’ Mathematics Achievement. Journal of
Educational Psychology, 113(4), 754-769. https://doi.org/10.1037/edu0000487

Geary, D. C., Hoard, M. K., Nugent, L., Ünal, Z. E., & Scofield, J. E. (2020). Comorbid Learning Difficulties in
Reading and Mathematics: The Role of Intelligence and in-Class Attentive Behavior. Frontiers in Psychology,11, 572099. https://doi.org/ 10.3389/fpsyg.2020.572099

Geary, D. C., Nicholas, A., Li, Y., & Sun, J. (2017). Developmental Change in the Influence of DomainGeneral Abilities and Domain-Specific Knowledge onMathematics Achievement: An Eight-Year Longitudinal
Study. Educational Psychology, 109(5), 680-693. https://doi.org/10.1037/edu0000159

Gal, I., Grotlüschen, A., Tout, D., & Kaiser, G. (2020). Numeracy, Adult Education, and Vulnerable Adults: A
Critical View of a Neglected Field. ZDM, 52(3), 377-394.https://doi.org/10.1007/s11858-020-01155-9.

Gioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2017a). BRIEF-2. Evaluación Conductual de la
Función Ejecutiva. Manual de aplicación, correccióne interpretación (M. J. Maldonado, M. C. Fournier, R. Martínez, J. González-Marqués, J. M. Espejo-Saavedra,& P. Santamaría, adaptadores). TEA Ediciones.

Gioia, G. A., Isquith, P. K., Guy, S. A., & Kenworthy, L. (2017b). BRIEF-2. Evaluación Conductual de la
Función Ejecutiva. Manual técnico (M. J. Maldonado, M. C. Fournier, R. Martínez, J. González-Marqués, J. M.
Espejo-Saavedra, & P. Santamaría, adaptadores). TEA Ediciones.

Goldin, G. A., Hannula, M. S., Heyd-Metzuyanim, E., Jansen, A., Kaasila, R., Lutovac, S., Di Martino, P.,
Morselli, F., Middleton, J. A., Pantziara, M., & Zhang, Q. (2016). Attitudes, Beliefs, Motivation and Identity
in Mathematics Education: An Overview of the Field and Future Directions. Springer Nature. https://doi.org/10.1007/978-3-319-32811-9

Hitch, G., Allen, R. J., & Baddeley, A. D. (2020). Attention and Binding in Visual Working Memory: Two Forms
of Attention and Two Kinds of Buffer Storage. Attention, Perception & Psychophysics, 82, 280-293. https://doi.org/10.3758/s13414-019-01837-x

Hurtado, L. (2011). Validación de una escala de actitudes hacia las matemáticas. Investigación Educativa, 15(28), 99-108.

Imbo, I., & Vandierendonck, A. (2007). The Development of Strategy Use in Elementary School Children:
Working Memory and Individual Differences. Journal of Experimental Child Psychology, 96(4), 284-309.https://doi.org/10.1016/j.jecp.2006.09.001

Lauermann, F., Tsai, Y. M., & Eccles, J. S. (2017). MathRelated Career Aspirations and Choices Within Eccles et al.’s Expectancy-Value Theory of AchievementRelated Behaviors. Developmental Psychology, 53, 1540-1559. https://doi.org/10.1037/dev0000367

Lu, L., Weber, H. S., Spinath, F. M., & Shi, J. (2011). Predicting School Achievement from Cognitive and Non-Cognitive Variables in a Chinese Sample of Elementary School Children. Intelligence, 39(2-3), 130- 140. https://doi.org/10.1016/j.intell.2011.02.002

Magalhães, S., Carneiro, L., Limpo, T., & Filipe, M. (2020). Executive Functions Predict Literacy and Mathematics Achievements: The Unique Contribution of Cognitive Flexibility in Grades 2, 4, and 6. Child Neuropsychology, 26(7), 934-952. https://doi.org/10.1080/09297049.2
020.1740188

Mahone, M. E., Cirino, P. T., Cutting, L. E., Cerrone, P. M., Hagelthorn, K. M., Hiemenz, J. R., Singer, H. S., & Denckla, M. B. (2002). Validity of the Behavior Rating Inventory of Executive Function in Children with ADHD and/or Tourette Syndrome. Archives of Clinical Neuropsychology, 17(7), 643-662. https://doi.org/10.1093/arclin/17.7.643

Martin, A. J., Way, J., Bobis, J., & Anderson, J. (2015). Exploring the Ups and Downs of Math Engagement in
the Middle School Years. Journal of Early Adolescence, 35(2), 199-244. https://doi.org/10.1177/0272431614529365

McAuley, T., Chen, S., Goos, L., Schachar, R., & Crosbie,J. (2010). Is the Behavior Rating Inventory of Executive
Function More Strongly Associated with Measures of Impairment or Executive Function? Journal of the International Neuropsychological Society, 16(3), 495-505. https://doi.org/10.1017/S1355617710000093

McMillan, J. H., Myran, S., & Workman, D. (2002). Elementary Teachers’ Classroom Assessment and
Grading Practices. The Journal of Educational Research, 95, 203-213. https://doi.org/10.1080/00220670209596593

Ministerio de Educación. (2012a). Núcleos de aprendizaje prioritarios. Matemática. Ciclo básico educación
secundaria 1° y 2° / 2° y 3° año. https://www.educ.ar/recursos/110570/nap-matematica-educacionsecundaria-ciclo-basico

Ministerio de Educación. (2012b). Núcleos de aprendizaje prioritarios. Matemática. Campo de formación
general ciclo orientado educación secundaria. https://www.educ.ar/recursos/132578/nap-matematicaeducacion-secundaria-ciclo-orientado

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The Unity and
Diversity of Executive Functions and Their Contributions to Complex «Frontal Lobe» Tasks: A Latent Variable Analysis. Cognitive Psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734

National Mathematics Advisory Panel. (2008). Foundations for Success: Final Report of the National
Mathematics Advisory Panel. United States Department of Education. http://www.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf

Nigg, J. T. (2000). On Inhibition/Disinhibition in Developmental Psychopathology: Views from
Cognitive and Personality Psychology and a Working Inhibition Taxonomy. Psychological Bulletin, 126(2), 220-246. https://doi.org/10.1037/0033-2909.126.2.220

Nigg, J. T. (2017). Annual Research Review: On the Relations Among Self Regulation, Self Control,
executive functioning, effortful control, cognitive control, impulsivity, Risk Taking, and Inhibition for
Developmental Psychopathology. Journal of Child Psychology and Psychiatry, 58(4), 361-383. https://doi.org/10.1111/jcpp.12675

Organization for Economic Cooperation and Development. (2019). PISA 2018 results (Volume I): What students
know and can do. Programme for International Student Assessment, OECD. https://doi.org/10.1787/5f07c754-en

Pajares, F. (2008). Motivational Role of Self-Efficacy Beliefs in Self-Regulated Learning. En D. H. Schunk & B. J.
Zimmerman (Eds.), Motivation and Self-Regulated Learning: Theory, Research, and Applications (pp.
111-139). Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203831076

Paris, S. G., & Paris, A. H. (2001). Classroom Applications of Research on Self-Regulated Learning. Educational
Psychologist, 36(2), 89-101. https://doi.org/10.1207/S15326985EP3602_4

Peng, P., Namkung, J., Barnes, M., & Sun, C. (2016). A Meta-Analysis of Mathematics and Working Memory:Moderating Effects of Working Memory Domain, Type of Mathematics skill, and Sample Characteristics. Journal of Educational Psychology, 108(4), 455-473.
https://doi.org/10.1037/edu0000079

Pino, M., & Arán, V. (2021). Confirmatory Factor Analysis of the BRIEF-2 Parent and Teacher Form: Relationship
to Performance-Based Measures of Executive Functions and Academic Achievement. Applied
Neuropsychology. Child, 10(3), 219-233. https://doi.org/10.1080/21622965.2019.1660984

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working Memory and Mathematics: A Review of
Developmental, Individual Differences, and Cognitive Approaches. Learning and Individual Differences,20(2), 110-122. https://doi.org/10.1016/j.lindif.2009.10.005

Rejeki, S., Setyaningsih, N., & Toyib, M. (2017). Using LEGO for Learning Fractions, Supporting or
Distracting? AIP Conference Proceedings, 1848(1), 040016. https://doi.org/10.1063/1.4983954

Reyna, V. F., Nelson, W. L., Han, P. K., & Dieckmann, N. F. (2009). How Numeracy Influences Risk Comprehension
and Medical Decision Making. Psychological Bulletin, 135, 943-973. https://doi.org/10.1037/a0017327

Rivera, B. E., & Bernal, D. (2018). La importancia de la educación financiera en la toma de decisiones de
endeudamiento. Estudio de una sucursal de «Mi Banco» en México. Revista Perspectivas, 41, 117-144.

Rosenzweig, E., Wigfield, A., & Eccles, J. (2019). ExpectancyValue Theory and its Relevance for Student Motivation
and Learning. En K. Renninger & S. Hidi (Eds.), The Cambridge Handbook of Motivation and Learning (pp.
617-644). Cambridge University Press. https://doi.org/10.1017/9781316823279.026

Schunk, D. H., & Hanson, A. R. (1985). Peer Models: Influence on Children’s Self-Efficacy and Achievement.
Journal of Educational Psychology, 77(3), 313-322. https://doi.org/10.1037/0022-0663.77.3.313

Schunk, D. H., & Ertmer, P. A. (2000). Self-Regulation and Academic Learning: Self-efficacy Enhancing
Interventions. En M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of Self-Regulation (pp. 631-
649). Academic Press. https://doi.org/10.1016/B978-012109890-2/50048-2

Schunk, D. H., & Zimmerman, B. J. (Eds.). (2007). Motivation and Self-Regulated Learning: Theory, Research, and
Applications. Lawrence Erlbaum Associates Publishers.https://doi.org/10.4324/9780203831076

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., Susperreguy, M. I., &
Chen, M. (2012). Early Predictors of High School Mathematics Achievement. Psychological Science,
23(7), 691-697. https://doi.org/10.1177/0956797612440101

Spiegel, J. A., Goodrich, J. M., Morris, B. M., Osborne, C. M., & Lonigan, C. J. (2021). Relations Between
Executive Functions and Academic Outcomes in Elementary School Children: A Meta-Analysis.
Psychological Bulletin, 147(4), 329. https://doi.org/10.1037/bul0000322

Skaalvik, E. M. (1997). Issues in Research on Self-Concept. En M. Meahr & P. R. Pintrich (Eds.), Advances in
Motivation and Achievement (Vol. 10, pp. 51-97). JAIPress Inc.

Spinath, B., Spinath, F. M., Harlaar, N., & Plomin, R. (2006). Predicting School Achievement from General Cognitive Ability, Self-Perceived Ability, and Intrinsic Value. Intelligence, 34(4), 363-374. https://doi.org/10.1016/j.intell.2005.11.004

Stelzer, F., Aydmune, Y., Vernucci, S., Andres, M. L., & Introzzi, I. (2021, 22-24 de septiembre). Adaptación de
una escala para la medición del desempeño en matemáticas en estudiantes de Argentina. Evidencias
de validez y confiabilidad [Póster]. XVIII Reunión Nacional y VII Encuentro Internacional de la Asociación
Argentina de Ciencias del Comportamiento, Mar del Plata, Argentina.

Stelzer, F., Vernucci, S., Aydmune, Y., del Valle, M., & Andrés, M. L. (2020). Diseño y validación de una escala de actitudes hacia las matemáticas. Revista Evaluar, 20(2), 51-68. https://doi.org/10.35670/1667-4545.v20.n2.30109

Stipek, D. (2002). Motivation to Learn: Integrating Theory and Practice (4.ta ed.). Allyn & Bacon.

Tapia, M., & Marsh, G. E. (2004). An Instrument to Measure Mathematics Attitudes. Academic Exchange
Quarterly, 8(2), 16-22. Tokac, U., Novak, E., & Thompson, C. G. (2019). Effects of
Game-Based Learning on Students’ Mathematics Achievement: A Meta-Analysis. Journal of Computer
Assisted Learning, 35(3), 407-420. https://doi.org/10.1111/jcal.12347

Wang, M. T., Ye, F., & Degol, J. L. (2017). Who Chooses STEM Careers? Using a Relative Cognitive Strength
and Interest Model to predict careers in Science, Technology, Engineering, and Mathematics. Journal
of Youth and Adolescence, 46, 1805-1820. https://doi.org/10.1007/s10964-016-0618-8

Wang, M. T., & Eccles, J. S. (2012). Adolescent Behavioral, Emotional, and Cognitive Engagement Trajectories in
School and Their Differential Relations to Educational Success. Journal of Research on Adolescence, 22(1),31-39. https://doi.org/10.1111/j.1532-7795.2011.00753.x

Warner, R. M. (2012). Applied Statistics: From Bivariate Through Multivariate Techniques. SAGE.

Weber, H. S., Lu, L., Shi, J., & Spinath, F. M. (2013). The Roles of Cognitive and Motivational Predictors in
Explaining School Achievement in Elementary School. Learning and Individual Differences, 25, 85-92.
https://doi.org/10.1016/j.lindif.2013.03.008

Wigfield, A., Eccles, J. S., Schiefele, U., Roeser, R. W., & Davis-Kean, P. (2006). Development of Achievement
Motivation. En N. Eisenberg, W. Damon, & R. M. Lerner (Eds.), Handbook of Child Psychology: Social,
Emotional, and Personality Development (pp. 933-1002). John Wiley & Sons, Inc.

Wilkinson, G. (1993). Wide Range Achievement Test 3. WideRange, Inc.

Yeniad, N., Malda, M., Mesman, J., van IJzendoorn, M. H., & Pieper, S. (2013). Shifting Ability Predicts Math and
Reading Performance in Children: A Meta-Analytical Study. Learning and Individual Differences, 23, 1-9.
https://doi.org/10.1016/j.lindif.2012.10.004

Zhang, H., Miller-Cotto, D., & Jordan, N. C. (2023).Estimating the Co-Development of Executive Functions
and Math Achievement Throughout the Elementary Grades Using a Cross-Lagged Panel Model with Fixed
Effects. Contemporary Educational Psychology, 72, 102126. https://doi.org/10.1016/j.cedpsych.2022.102126

Zimmermann, F., Schütte, K., Taskinen, P., & Köller, O. (2013). Reciprocal Effects Between Adolescent
Externalizing Problems and Measures of Achievement. Journal of Educational Psychology, 105(3), 747-761.
https://doi.org/10.1037/a0032793

Zhang, Y., Tolmie, A., & Gordon, R. (2023) The Relationship Between Working Memory and Arithmetic in Primary
School Children: A Meta-Analysis. Brain Science, 13(1), 22. https://doi.org/10.3390/brainsci13010022
Publicado
2023-05-23
Sección
Artículos de investigación