Cognitive and Attitudinal Factors Involved in Mathematical Performance in High School Students

  • Florencia Stelzer Instituto de Psicología Básica, Aplicada y Tecnología, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
  • Yésica Aydmune Instituto de Psicología Básica, Aplicada y Tecnología, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
  • Ana García-Coni Instituto de Psicología Básica, Aplicada y Tecnología, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
  • Santiago Vernucci Instituto de Psicología Básica, Aplicada y Tecnología, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
  • Isabel Introzzi Instituto de Psicología Básica, Aplicada y Tecnología, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Keywords: academic achievement, executive functions, attitudes towards math, adolescents


Background: Different authors indicate that attitudes towards mathematics, executive functions, and prior mathematical knowledge represent central variables in mathematics learning; however, there is no evidence about their joint and relative contribution to this knowledge in high school students. Main goal: To analyzes the contribution of perceived competence, mathematics enjoyment, executive functions, and prior math knowledge over mathematics performance in first and second-year high school students. Method: Participants were 178 students who were enrolled in the first two years of high school (Mage = 13.4 years, SD = .32; 45.5% boys). Results: The set of variables explained 49% of the variance in mathematics performance. Perceived competence, mathematics enjoyment, and working memory were significant predictors. No differences were found in the strength of the relationship between working memory and mathematics performance between years of education. Conclusions: The attitudinal aspects assessed and working memory represent important variables for mathematics performance prediction.

Authorship contribution
All authors contributed to all aspects of the work.


Download data is not yet available.


Adelson, J. L., & McCoach, D. B. (2011). Development and Psychometric Properties of The Math and Me Survey.
Measuring Third Through Sixth Graders’ Attitudes Toward Mathematics. Measurement and Evaluation in
Counseling and Development, 44(4), 225-247.

Aiken, L. R. (1974). Two Scales of Attitude Toward Mathematics. Journal for Research in Mathematics
Education, 5(2), 67-71.

Alloway, T. P., & Copello, E. (2013). Working Memory: The What, the Why, and the How. The Educational and
Developmental Psychologist, 30(2), 105-118.

Arán, V., & Richaud, M. C. (2017). A Structural Equation Modeling of Executive Functions, IQ and Mathematical
Skills in Primary Students: Differential Effects on Number Production, Mental Calculus and Arithmetical
Problems. Child Neuropsychology, 23(7), 864-888.

Arens, A. K., Marsh, H. W., Pekrun, R., Lichtenfeld, S., Murayama, K., & Vom Hofe, R. (2017). Math SelfConcept, Grades, and Achievement Test Scores: LongTerm Reciprocal Effects Across Five Waves and Three Achievement Tracks. Journal of Educational
Psychology, 109(5), 621-634.

Auzmendi, E. (1992). Las actitudes hacia la matemáticaestadística en las enseñanzas medias y universitaria. Características y medición. Mensajero.

Baddeley, A. D. (2012). Working Memory: Theories, Models, and Controversies. Annual Review of Psychology, 63, 1-29.

Bull, R., & Lee, K. (2014). Executive Functioning and Mathematics Achievement. Child Development
Perspectives, 8(1), 36-41.

Bull, R., & Scerif, G. (2001). Executive Functioning as a Predictor of Children’s Mathematics Ability: Inhibition,
Switching, and Working Memory. Developmental Neuropsychology, 19(3), 273-293.

Buttelmann, F., & Karbach, J. (2017). Development and Plasticity of Cognitive Flexibility in Early and Middle
Childhood. Frontiers in Psychology, 8, 1040.

Cassidy, S. (2011). Self-Regulated Learning in Higher Education: Identifying Key Component Processes.
Studies in Higher Education, 36(8), 989-1000.

Chen, L., Bae, S. R., Battista, C., Qin, S., Chen, T., Evans, T. M., & Menon, V. (2018). Positive Attitude Toward
Math Supports Early Academic Success: Behavioral Evidence and Neurocognitive Mechanisms.
Psychological Science, 29(3), 390-402.

Chung, M. K. (2000). The Development of Self-Regulated Learning. Asia Pacific Education Review, 1(1), 55-66.

Connell, J. P., & Wellborn, J. G. (1991). Competence, Autonomy, and Relatedness: A Motivational Analysis
of Self-System Processes. En M. R. Gunnar & L. A. Sroufe (Eds.), Self processes and development (pp. 43-77). Lawrence Erlbaum Associates, Inc.

Cragg, L., & Gilmore, C. (2014). Skills Underlying Mathematics: The Role of Executive Function in the Development of Mathematics Proficiency. Trends in Neuroscience and Education, 3(2), 63-68.

Dehn, M. J. (2017). How Working Memory Enables Fluid Reasoning. Applied Neuropsychology: Child, 6(3), 245-247.

Dempster, F. N. (1992). The Rise and Fall of the Inhibitory Mechanism: Toward a Unified Theory of Cognitive
Development and Aging. Developmental Review, 12(1), 45-75.

Diamond, A. (2013). Executive Functions. Annual Review of Psychology, 64(1), 135-168. annurev-psych-113011-143750

Di Martino, P., & Zan, R. (2015). The Construct of Attitude in Mathematics Education. En B. Pepin, & B. RoeskenWinter (Eds.), From Beliefs to Dynamic Affect Systems in Mathematics Education: Exploring a Mosaic of Relationships and Interactions (pp. 51-72). Springer International Publishing/Springer Nature.

Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., Paganie, L., Feinsteinf,
L., Engela, M., BrooksGunng, J., Sextonh, H., Duckworthf, K., & Jape, C. (2007). School Readiness
and Later Achievement. Developmental Psychology, 43, 1428-1446.

DuPaul, G. J., Rapport, M. D., & Perriello, L. M. (1991). Teacher Ratings of Academic Skills: The Development
of the Academic Performance Rating Scale. School Psychology Review, 20(2), 284-300.

Eagly, A. H., & Chaiken, S. (2005). Attitude Research in the 21st century: The Current State of Knowledge. En
D. Albarracín, B. T. Johnson, & M. P. Zanna (Eds.), The Handbook of Attitudes (pp. 743-767). Lawrence
Erlbaum Associates Publishers.

Eccles, J. S., & Wang, M. T. (2016). What Motivates Females and Males to Pursue Careers in Mathematics
and Science? International Journal of Behavioral Development, 40, 100-106.

Engle, R. W. (2018). Working Memory and Executive Attention: A Revisit. Perspectives on Psychological
Science, 13(2), 190-193.

Field, A. (2017). Discovering Statistics Using IBM SPSS Statistics. (5.ta ed.). Sage.

Friso-Van den Bos, I., Van der Ven, S. H. G., Kroesbergen, E. H., & Van Luit, J. E. H. (2013). Working Memory and
Mathematics in Primary School Children: A MetaAnalysis. Educational Research Review, 10, 29-44.

Fuchs, L. S., Fuchs, D., Sterba, S. K., Barnes, M. A., Seethaler, P. M., & Changas, P. (2022). Building WordProblem Solving and Working Memory Capacity: A Randomized Controlled Trial Comparing Three Intervention Approaches. Journal of Educational Psychology, 114(7), 1633-1653.

Geary, D. C., Boykin, A. W., Embretson, S., Reyna, V., Siegler, R., Berch, D. B., & Graban, J. (2008). Report of the Task
Group on Learning Processes. En National Mathematics Advisory Panel (Ed.), Foundations for Success. The
Final Report of the National Mathematics Advisory Panel. (pp. 4.i-4.221). U.S. Department of Education.

Geary, D. C., Hoard, M. K., Nugent, L., & Scofield, J. E. (2021). In-class Attention, Spatial Ability, and
Mathematics Anxiety Predict Across-Grade Gains in Adolescents’ Mathematics Achievement. Journal of
Educational Psychology, 113(4), 754-769.

Geary, D. C., Hoard, M. K., Nugent, L., Ünal, Z. E., & Scofield, J. E. (2020). Comorbid Learning Difficulties in
Reading and Mathematics: The Role of Intelligence and in-Class Attentive Behavior. Frontiers in Psychology,11, 572099. 10.3389/fpsyg.2020.572099

Geary, D. C., Nicholas, A., Li, Y., & Sun, J. (2017). Developmental Change in the Influence of DomainGeneral Abilities and Domain-Specific Knowledge onMathematics Achievement: An Eight-Year Longitudinal
Study. Educational Psychology, 109(5), 680-693.

Gal, I., Grotlüschen, A., Tout, D., & Kaiser, G. (2020). Numeracy, Adult Education, and Vulnerable Adults: A
Critical View of a Neglected Field. ZDM, 52(3), 377-394.

Gioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2017a). BRIEF-2. Evaluación Conductual de la
Función Ejecutiva. Manual de aplicación, correccióne interpretación (M. J. Maldonado, M. C. Fournier, R. Martínez, J. González-Marqués, J. M. Espejo-Saavedra,& P. Santamaría, adaptadores). TEA Ediciones.

Gioia, G. A., Isquith, P. K., Guy, S. A., & Kenworthy, L. (2017b). BRIEF-2. Evaluación Conductual de la
Función Ejecutiva. Manual técnico (M. J. Maldonado, M. C. Fournier, R. Martínez, J. González-Marqués, J. M.
Espejo-Saavedra, & P. Santamaría, adaptadores). TEA Ediciones.

Goldin, G. A., Hannula, M. S., Heyd-Metzuyanim, E., Jansen, A., Kaasila, R., Lutovac, S., Di Martino, P.,
Morselli, F., Middleton, J. A., Pantziara, M., & Zhang, Q. (2016). Attitudes, Beliefs, Motivation and Identity
in Mathematics Education: An Overview of the Field and Future Directions. Springer Nature.

Hitch, G., Allen, R. J., & Baddeley, A. D. (2020). Attention and Binding in Visual Working Memory: Two Forms
of Attention and Two Kinds of Buffer Storage. Attention, Perception & Psychophysics, 82, 280-293.

Hurtado, L. (2011). Validación de una escala de actitudes hacia las matemáticas. Investigación Educativa, 15(28), 99-108.

Imbo, I., & Vandierendonck, A. (2007). The Development of Strategy Use in Elementary School Children:
Working Memory and Individual Differences. Journal of Experimental Child Psychology, 96(4), 284-309.

Lauermann, F., Tsai, Y. M., & Eccles, J. S. (2017). MathRelated Career Aspirations and Choices Within Eccles et al.’s Expectancy-Value Theory of AchievementRelated Behaviors. Developmental Psychology, 53, 1540-1559.

Lu, L., Weber, H. S., Spinath, F. M., & Shi, J. (2011). Predicting School Achievement from Cognitive and Non-Cognitive Variables in a Chinese Sample of Elementary School Children. Intelligence, 39(2-3), 130- 140.

Magalhães, S., Carneiro, L., Limpo, T., & Filipe, M. (2020). Executive Functions Predict Literacy and Mathematics Achievements: The Unique Contribution of Cognitive Flexibility in Grades 2, 4, and 6. Child Neuropsychology, 26(7), 934-952.

Mahone, M. E., Cirino, P. T., Cutting, L. E., Cerrone, P. M., Hagelthorn, K. M., Hiemenz, J. R., Singer, H. S., & Denckla, M. B. (2002). Validity of the Behavior Rating Inventory of Executive Function in Children with ADHD and/or Tourette Syndrome. Archives of Clinical Neuropsychology, 17(7), 643-662.

Martin, A. J., Way, J., Bobis, J., & Anderson, J. (2015). Exploring the Ups and Downs of Math Engagement in
the Middle School Years. Journal of Early Adolescence, 35(2), 199-244.

McAuley, T., Chen, S., Goos, L., Schachar, R., & Crosbie,J. (2010). Is the Behavior Rating Inventory of Executive
Function More Strongly Associated with Measures of Impairment or Executive Function? Journal of the International Neuropsychological Society, 16(3), 495-505.

McMillan, J. H., Myran, S., & Workman, D. (2002). Elementary Teachers’ Classroom Assessment and
Grading Practices. The Journal of Educational Research, 95, 203-213.

Ministerio de Educación. (2012a). Núcleos de aprendizaje prioritarios. Matemática. Ciclo básico educación
secundaria 1° y 2° / 2° y 3° año.

Ministerio de Educación. (2012b). Núcleos de aprendizaje prioritarios. Matemática. Campo de formación
general ciclo orientado educación secundaria.

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The Unity and
Diversity of Executive Functions and Their Contributions to Complex «Frontal Lobe» Tasks: A Latent Variable Analysis. Cognitive Psychology, 41(1), 49-100.

National Mathematics Advisory Panel. (2008). Foundations for Success: Final Report of the National
Mathematics Advisory Panel. United States Department of Education.

Nigg, J. T. (2000). On Inhibition/Disinhibition in Developmental Psychopathology: Views from
Cognitive and Personality Psychology and a Working Inhibition Taxonomy. Psychological Bulletin, 126(2), 220-246.

Nigg, J. T. (2017). Annual Research Review: On the Relations Among Self Regulation, Self Control,
executive functioning, effortful control, cognitive control, impulsivity, Risk Taking, and Inhibition for
Developmental Psychopathology. Journal of Child Psychology and Psychiatry, 58(4), 361-383.

Organization for Economic Cooperation and Development. (2019). PISA 2018 results (Volume I): What students
know and can do. Programme for International Student Assessment, OECD.

Pajares, F. (2008). Motivational Role of Self-Efficacy Beliefs in Self-Regulated Learning. En D. H. Schunk & B. J.
Zimmerman (Eds.), Motivation and Self-Regulated Learning: Theory, Research, and Applications (pp.
111-139). Lawrence Erlbaum Associates.

Paris, S. G., & Paris, A. H. (2001). Classroom Applications of Research on Self-Regulated Learning. Educational
Psychologist, 36(2), 89-101.

Peng, P., Namkung, J., Barnes, M., & Sun, C. (2016). A Meta-Analysis of Mathematics and Working Memory:Moderating Effects of Working Memory Domain, Type of Mathematics skill, and Sample Characteristics. Journal of Educational Psychology, 108(4), 455-473.

Pino, M., & Arán, V. (2021). Confirmatory Factor Analysis of the BRIEF-2 Parent and Teacher Form: Relationship
to Performance-Based Measures of Executive Functions and Academic Achievement. Applied
Neuropsychology. Child, 10(3), 219-233.

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working Memory and Mathematics: A Review of
Developmental, Individual Differences, and Cognitive Approaches. Learning and Individual Differences,20(2), 110-122.

Rejeki, S., Setyaningsih, N., & Toyib, M. (2017). Using LEGO for Learning Fractions, Supporting or
Distracting? AIP Conference Proceedings, 1848(1), 040016.

Reyna, V. F., Nelson, W. L., Han, P. K., & Dieckmann, N. F. (2009). How Numeracy Influences Risk Comprehension
and Medical Decision Making. Psychological Bulletin, 135, 943-973.

Rivera, B. E., & Bernal, D. (2018). La importancia de la educación financiera en la toma de decisiones de
endeudamiento. Estudio de una sucursal de «Mi Banco» en México. Revista Perspectivas, 41, 117-144.

Rosenzweig, E., Wigfield, A., & Eccles, J. (2019). ExpectancyValue Theory and its Relevance for Student Motivation
and Learning. En K. Renninger & S. Hidi (Eds.), The Cambridge Handbook of Motivation and Learning (pp.
617-644). Cambridge University Press.

Schunk, D. H., & Hanson, A. R. (1985). Peer Models: Influence on Children’s Self-Efficacy and Achievement.
Journal of Educational Psychology, 77(3), 313-322.

Schunk, D. H., & Ertmer, P. A. (2000). Self-Regulation and Academic Learning: Self-efficacy Enhancing
Interventions. En M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of Self-Regulation (pp. 631-
649). Academic Press.

Schunk, D. H., & Zimmerman, B. J. (Eds.). (2007). Motivation and Self-Regulated Learning: Theory, Research, and
Applications. Lawrence Erlbaum Associates Publishers.

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., Susperreguy, M. I., &
Chen, M. (2012). Early Predictors of High School Mathematics Achievement. Psychological Science,
23(7), 691-697.

Spiegel, J. A., Goodrich, J. M., Morris, B. M., Osborne, C. M., & Lonigan, C. J. (2021). Relations Between
Executive Functions and Academic Outcomes in Elementary School Children: A Meta-Analysis.
Psychological Bulletin, 147(4), 329.

Skaalvik, E. M. (1997). Issues in Research on Self-Concept. En M. Meahr & P. R. Pintrich (Eds.), Advances in
Motivation and Achievement (Vol. 10, pp. 51-97). JAIPress Inc.

Spinath, B., Spinath, F. M., Harlaar, N., & Plomin, R. (2006). Predicting School Achievement from General Cognitive Ability, Self-Perceived Ability, and Intrinsic Value. Intelligence, 34(4), 363-374.

Stelzer, F., Aydmune, Y., Vernucci, S., Andres, M. L., & Introzzi, I. (2021, 22-24 de septiembre). Adaptación de
una escala para la medición del desempeño en matemáticas en estudiantes de Argentina. Evidencias
de validez y confiabilidad [Póster]. XVIII Reunión Nacional y VII Encuentro Internacional de la Asociación
Argentina de Ciencias del Comportamiento, Mar del Plata, Argentina.

Stelzer, F., Vernucci, S., Aydmune, Y., del Valle, M., & Andrés, M. L. (2020). Diseño y validación de una escala de actitudes hacia las matemáticas. Revista Evaluar, 20(2), 51-68.

Stipek, D. (2002). Motivation to Learn: Integrating Theory and Practice (4.ta ed.). Allyn & Bacon.

Tapia, M., & Marsh, G. E. (2004). An Instrument to Measure Mathematics Attitudes. Academic Exchange
Quarterly, 8(2), 16-22. Tokac, U., Novak, E., & Thompson, C. G. (2019). Effects of
Game-Based Learning on Students’ Mathematics Achievement: A Meta-Analysis. Journal of Computer
Assisted Learning, 35(3), 407-420.

Wang, M. T., Ye, F., & Degol, J. L. (2017). Who Chooses STEM Careers? Using a Relative Cognitive Strength
and Interest Model to predict careers in Science, Technology, Engineering, and Mathematics. Journal
of Youth and Adolescence, 46, 1805-1820.

Wang, M. T., & Eccles, J. S. (2012). Adolescent Behavioral, Emotional, and Cognitive Engagement Trajectories in
School and Their Differential Relations to Educational Success. Journal of Research on Adolescence, 22(1),31-39.

Warner, R. M. (2012). Applied Statistics: From Bivariate Through Multivariate Techniques. SAGE.

Weber, H. S., Lu, L., Shi, J., & Spinath, F. M. (2013). The Roles of Cognitive and Motivational Predictors in
Explaining School Achievement in Elementary School. Learning and Individual Differences, 25, 85-92.

Wigfield, A., Eccles, J. S., Schiefele, U., Roeser, R. W., & Davis-Kean, P. (2006). Development of Achievement
Motivation. En N. Eisenberg, W. Damon, & R. M. Lerner (Eds.), Handbook of Child Psychology: Social,
Emotional, and Personality Development (pp. 933-1002). John Wiley & Sons, Inc.

Wilkinson, G. (1993). Wide Range Achievement Test 3. WideRange, Inc.

Yeniad, N., Malda, M., Mesman, J., van IJzendoorn, M. H., & Pieper, S. (2013). Shifting Ability Predicts Math and
Reading Performance in Children: A Meta-Analytical Study. Learning and Individual Differences, 23, 1-9.

Zhang, H., Miller-Cotto, D., & Jordan, N. C. (2023).Estimating the Co-Development of Executive Functions
and Math Achievement Throughout the Elementary Grades Using a Cross-Lagged Panel Model with Fixed
Effects. Contemporary Educational Psychology, 72, 102126.

Zimmermann, F., Schütte, K., Taskinen, P., & Köller, O. (2013). Reciprocal Effects Between Adolescent
Externalizing Problems and Measures of Achievement. Journal of Educational Psychology, 105(3), 747-761.

Zhang, Y., Tolmie, A., & Gordon, R. (2023) The Relationship Between Working Memory and Arithmetic in Primary
School Children: A Meta-Analysis. Brain Science, 13(1), 22.
How to Cite
Stelzer, F., Aydmune, Y., García-Coni, A., Vernucci, S., & Introzzi, I. (2023, May 23). Cognitive and Attitudinal Factors Involved in Mathematical Performance in High School Students. LIBERABIT. Revista Peruana De Psicología, 29(1), e659.
Research articles